Problem 1

Classify the following equations according to all the properties we've discussed in Figure 1.1:
(a) $u_{t}=u_{x x}+2 u_{x}+u$
(b) $u_{t}=u_{x x}+e^{-t}$
(c) $u_{x x}+3 u_{x y}+u_{y y}=\sin x$
(d) $u_{t t}=u u_{x x x x}+e^{-t}$

Solution

Part (a)

$$
\begin{gathered}
u_{t}=u_{x x}+2 u_{x}+u \\
u_{x x}-u_{t}+2 u_{x}+u=0
\end{gathered}
$$

This is a linear second-order homogeneous PDE with constant coefficients. Comparing this with the general form of a second-order PDE,

$$
A u_{t t}+B u_{t x}+C u_{x x}+D u_{t}+E u_{x}+F u=G
$$

we see that $A=0, B=0, C=1, D=-1, E=2, F=1$, and $G=0$. Calculate the discriminant: $B^{2}-4 A C=0$. Therefore, $u_{t}=u_{x x}+2 u_{x}+u$ is parabolic.

Part (b)

$$
\begin{gathered}
u_{t}=u_{x x}+e^{-t} \\
u_{x x}-u_{t}=-e^{-t}
\end{gathered}
$$

This is a linear second-order inhomogeneous PDE with constant coefficients. Comparing this with the general form of a second-order PDE,

$$
A u_{t t}+B u_{t x}+C u_{x x}+D u_{t}+E u_{x}+F u=G
$$

we see that $A=0, B=0, C=1, D=-1, E=0, F=0$, and $G=-e^{-t}$. Calculate the discriminant: $B^{2}-4 A C=0$. Therefore, $u_{t}=u_{x x}+e^{-t}$ is parabolic.

Part (c)

$$
u_{x x}+3 u_{x y}+u_{y y}=\sin x
$$

This is a linear second-order inhomogeneous PDE with constant coefficients. Comparing this with the general form of a second-order PDE,

$$
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G,
$$

we see that $A=1, B=3, C=1, D=0, E=0, F=0$, and $G=\sin x$. Calculate the discriminant: $B^{2}-4 A C=5>0$. Therefore, $u_{t}=u_{x x}+e^{-t}$ is hyperbolic.

Part (d)

$$
u_{t t}=u u_{x x x x}+e^{-t}
$$

This is a nonlinear fourth-order inhomogeneous PDE.

